

Musictheorpy: A Music Theory Library for Python

	License
	Questions?

	Installation

	Musictheorpy API Reference
	Quickstart

	Reference

	Contributing
	Setting Up Your Environment

Indices and tables

	Index

	Module Index

	Search Page

License

Copyright (c) 2020 Jeffrey T. Moorhead

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Questions?

If you have any questions about the Musictheorpy terms of use, please send an
email to jeff.moorhead1@gmail.com.

Installation

Installing Musictheorpy is really easy! All you need to do is run pip install musictheorpy and you can begin using
the library right away. Or, if you do not want to use pip, you can also download the source code from
Github [https://github.com/Jeff-Moorhead/musictheorpy] and install the code directly from within the project
root directory.

Musictheorpy API Reference

Musictheorpy is a Python library to perform musical calculations, including intervals, triads/chords, and scales.

Quickstart

All of the classes below can be accessed directly from within the musictheorpy namespace, for example:

>>> import musictheorpy
>>> note = musictheorpy.Note('A')

Notes

	
class Note(qualified_name)

	

Note objects are composed of a string representing a qualified note name. The
qualified note name should be a letter A through G,
optionally followed by a qualifier. Valid qualifiers are #, ##, b, and
bb (lowercase B). A note name with no qualifier is also allowed and represents a natural.
For example, Note(‘A’), Note(‘C#’), and Note(‘Gb’) are all valid, while
Note(‘H’) and Note(‘Fbbb’) are invalid. Note that note names can be lowercase or
uppercase, but qualifiers must be lowercase (e.g. Note(‘ab’) is valid, but Note(‘aB’) is not).
If you attempt to create a Note object with an invalid qualified note name, a NoteNameError is raised.

Scales

	
class Scale(qualified_name)

	

A scale object is constructed with a string representing the qualified scale
name. The qualified scale name consists of a tonic followed by a scale quality.
Valid tonics are letters A through G. Valid qualities are
major, harmonic minor, melodic minor, and natural minor. If an invalid tonic
passed, an InvalidTonicError is raised. If an invalid quality is passed, an
InvalidQualityError is raised. For example,

>>> c = Scale('C major')
>>> c_harm = Scale('C harmonic minor')
>>> c_badquality = Scale('C Foo')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/jmoorhead/projects/musictheorpy/musictheorpy/scales.py", line 36, in __init__
 super().__init__('SCALE', qualified_name)
 File "/home/jmoorhead/projects/musictheorpy/musictheorpy/notegroups.py", line 74, in __init__
 raise InvalidQualityError("Quality %s is not valid" % self.quality) from None
musictheorpy.notegroups.InvalidQualityError: Quality Foo is not valid
>>>
>>> c_badtonic = Scale('Z major')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/jmoorhead/projects/musictheorpy/musictheorpy/scales.py", line 36, in __init__
 super().__init__('SCALE', qualified_name)
 File "/home/jmoorhead/projects/musictheorpy/musictheorpy/notegroups.py", line 68, in __init__
 self._validate_root(unpacked_name)
 File "/home/jmoorhead/projects/musictheorpy/musictheorpy/scales.py", line 66, in _validate_root
 "key signature." % unpacked_name['ROOT'])
musictheorpy.scales.InvalidTonicError: Invalid tonic: Z. It is possible that this tonic is a valid
note name but that building the desired scale from this note would result in a scale with an invalid
key signature.

As indicated in the trace back for c_badtonic above, it is possible to pass a valid note name, but still receive an InvalidTonicError. This occurs when the
key signature of the given scale name would include qualifiers beyond sharps and flats.
For example, G# Major would have F## in its key signature. Because key signatures like
this are generally not used in music theory, they are not valid.

The key signature of a Scale object is accessible through its
key_signature property, which is a tuple of strings representing the
notes that make up the scale’s key signature. For example,

>>> a_major = Scale('A major')
>>> a_major.key_signature
('F#', 'C#', 'G#')
>>> e_minor = Scale('E natural minor')
>>> 'F#' in e_minor.key_signature
True

In addition, you can access all the notes in the scale through the
object’s notes attribute, which provides a tuple of strings representing
all the notes in the scale.

Scale objects implement the __getitem__ and __contains__ magic methods. __getitem__
allows you to lookup notes in a scale by degree name. Valid degree names are
tonic, supertonic, mediant, subdominant, dominant, submediant, and leading tone. For example,

>>> a_major = Scale('A major')
>>> a_major['tonic']
'A'
>>> a_major['submediant']
'F#'

Finally, users can test if a note is in a given scale using Python’s
built-in in keyword, thanks to the __contains__ method.

>>> a_major = Scale('A major')
>>> 'F#' in a_major
True
>>> 'B#' in a_major
False

Chords

	
class Chord(qualified_name)

	

Chord objects are constructed with a string representing the qualified
name of the chord. Like scales, the qualified name of a chord is made up
of a bass note name (letters A through G) followed by a quality. Valid
chord qualities are major, minor, diminished, augmented, and minor 7b5.
Chords containing upper extensions 7, 9, 11, and 13 are also possible. All upper
extensions can be dominant, major, or minor, e.g. dominant 7, major 9, minor 13.
In addition, extensions 9, 11, and 13 can be modified with a flat (b)
or sharp (#) for dominant chords, e.g. dominant #9, dominant b13.

If an invalid bass note is specified, an InvalidBassError is raised. Similarly,
if an invalid chord quality is specified, an InvalidQualityError is raised. For
example,

>>> c = Chord('C major')
>>> c_seventh = Chord('C dominant 7')
>>> z = Chord('Z major')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/jmoorhead/projects/musictheorpy/musictheorpy/chords.py", line 10, in __init__
 super().__init__('CHORD', qualified_name)
 File "/home/jmoorhead/projects/musictheorpy/musictheorpy/notegroups.py", line 68, in __init__
 self._validate_root(unpacked_name)
 File "/home/jmoorhead/projects/musictheorpy/musictheorpy/chords.py", line 25, in _validate_root
 raise InvalidBassError("Invalid bass note: %s" % unpacked_name['ROOT'])
musictheorpy.chords.InvalidBassError: Invalid bass note: Z
>>>
>>> c_badqual = Chord('C FOO')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/jmoorhead/projects/musictheorpy/musictheorpy/chords.py", line 10, in __init__
 super().__init__('CHORD', qualified_name)
 File "/home/jmoorhead/projects/musictheorpy/musictheorpy/notegroups.py", line 74, in __init__
 raise InvalidQualityError("Quality %s is not valid" % self.quality) from None
musictheorpy.notegroups.InvalidQualityError: Quality FOO is not valid

Users can access the notes in a Chord object via the object’s notes attribute. This
attribute provides a tuple containing all the notes in the chord as strings. For example,

>>> c_dominant = Chord('C dominant 7')
>>> c_dominant.notes
('C', 'E', 'G', 'Bb')

In addition, Chord objects implement the __contains__ method so users can check if a note is
in the chord directly:

>>> c = Chord('C major')
>>> 'E' in c
True
>>> 'F' in c
False

Finally, Chord objects allow access to its constituent notes via the __getitem__ method, which allows
lookup by degree name. Valid degree names are bass, third, fifth, seventh, ninth, eleventh, and thirteenth.
Note that not all degrees apply to all chords, and only thirteenth chords will
have all degrees. In general, chords only contain a subset of these degrees. If the caller tries to access a
degree that is not present in the given chord, __getitem__ returns None. For example,

>>> c = Chord('C major') # a triad, no extensions
>>> c['third'] # valid degree
'E'
>>> c['ninth'] is None # C triad does not have a ninth
True

If an invalid degree is passed, an InvalidDegreeError is raised:

>>> c = Chord('C major')
>>> c['foo']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/jmoorhead/projects/musictheorpy/musictheorpy/chords.py", line 18, in __getitem__
 raise InvalidDegreeError("Invalid degree name: %s" % element) from None
musictheorpy.notegroups.InvalidDegreeError: Invalid degree name: foo

Reference

Notes

	
VALID_NOTES

	Valid note names, not including qualifiers.

	
VALID_QUALIFIERS

	Valid note qualifiers.

	
VALID_QUALIFIED_NAMES

	Valid note names, including qualifiers.

	
class musictheorpy.notes.Note(qualified_name)

	Represents an individual note, the atomic element of Western music theory. The note’s qualified name is the note
name, optionally followed by the qualifier. Valid note names are English capital letters A through G. Valid
qualifiers are # (sharp), b (flat), ## (double sharp), bb (double flat). Note that flats must be lowercase or a
NoteNameError is raised. A note name followed by no qualifier represents a natural, e.g. ‘A’ represents ‘A
natural’. If an invalid qualified note name is passed, a NoteNameError is raised. Once a Note object is created,
it’s qualified name should not be modified.

	
ascend_interval(qualified_interval_name)

	
	Parameters

	qualified_interval_name – The interval to ascend, e.g. major 3.

	Returns

	A Note object representing the top note of the interval. If the top note of the interval is not
a valid note, such as F###, and InvalidIntervalError is raised.

	
descend_interval(qualified_interval_name)

	
	Parameters

	qualified_interval_name – the interval to fetch, e.g. major 3.

	Returns

	a Note object representing the bottom note of the interval. If the bottom note of the interval is not
a valid note, such as F###, an InvalidInvervalError is raised.

	
get_interval_name(top_note)

	Gives the name of the interval between the current note and top_note. Note that the current note is
always treated as the bottom note in the interval.

	Parameters

	top_note (str) – the qualified name of the top note of the interval.

	
exception musictheorpy.notes.NoteNameError

	Raised when attempting to create a Note object with a qualified note name that is not valid.

Scales

	
class musictheorpy.scales.Scale(qualified_name)

	Represents a collection of notes. Scales are built from a series of whole and half steps and have a key signature
and tonic. Each note in a scale is identified either by a number (1 through 7) or a degree name. Valid tonics are
English letters A through G, and valid qualities are MAJOR, HARMONIC MINOR, MELODIC MINOR, and NATURAL MINOR. An
InvalidTonicError is raised if the scale name has a key signature involving double sharps or double flats.

	
classmethod _fetch_key_signature(tonic, quality)

	Returns a list of strings with the note names that make up the scale’s key signature.

	
_validate_root(unpacked_name)

	Ensures that the tonic of the scale is valid.

	Parameters

	unpacked_name (list) – The qualified name of the scale unpacked into a list.

	Raises

	InvalidTonicError: If the tonic is an invalid note or if the key signature of the
scale would contain double sharps or double flats.

	
get_parallel()

	Returns the parallel major or minor of the current scale.

	Return type

	Scale

	
get_relative()

	Returns the relative major or minor of the current scale.

	Return type

	Scale

	
get_triad_for_degree(degree)

	Builds a triad based on the current scale’s quality and the given degree.

	Parameters

	degree – a string representing the scale degree, such as TONIC, MEDIANT.

	Raises

	InvalidDegreeError

	Returns

	a Chord object with the scale degree as its root.

	
exception musictheorpy.scales.InvalidTonicError

	Raised when attempting to create a Scale object with an invalid tonic. This situation could arise from attempting to
create a Scale object with a tonic that is greater than G, or when attempting to create a Scale object with a valid
tonic name (that is an English letter between A and G), but for whom the passed quality would result in a scale that
includes invalid note names in its key signature, such as double sharps. An example of this situation is a G# Major
scale.

Chords

	
class musictheorpy.chords.Chord(qualified_name)

	Represents triads and chords. Triads have a quality of either major or minor, and consist of a bass note,
a third, and a fifth. Chords are triads with upper extensions.
Possible upper extensions are 7, 9, 11, and 13, optionally qualified with a sharp (#) or flat (b).

	
_validate_root(unpacked_name)

	Ensures that the bass of the chord is valid.

	Parameters

	unpacked_name (dict) – The qualified name of the chord unpacked into a list.

	Raises

	InvalidBassError: If the bass note is an invalid note.

	
exception musictheorpy.chords.InvalidBassError

	Raised when attempting to create a Chord object with an invalid bass note.

Note Groups

	
class musictheorpy.notegroups._NoteGroup(grouptype, qualified_name)

	An abstract base class used to define an interface for note groups, such as scales and chords.

	
exception musictheorpy.notegroups.InvalidDegreeError

	Raised when an attempting to fetch an invalid scale degree name. Valid scale degree names are
tonic, supertonic, mediant, subdominant, dominant, submediant, and leading tone.

	
exception musictheorpy.notegroups.InvalidQualityError

	Raised when the quality of a scale or chord is invalid.

Interval Utils

	
musictheorpy.interval_utils.INTERVAL_NOTE_PAIRS

	A dictionary giving note names corresponding to intervals. The keys in the dictionary
are starting notes. Each dictionary element has a dictionary as its value. The keys of the inner
dictionaries are the interval code corresponding to a qualified interval name. The values of the inner
dictionaries are the top note of the interval.

	
class musictheorpy.interval_utils._IntervalBuilder(rootnote)

	This class can be used as a utility class to facilitate interval calculations. Objects store a root note as a string
and builds intervals on that note.

	
ascend_interval_from_name(qualified_interval_name)

	Ascend a specified interval from the root note.

	Raises

	InvalidIntervalError: If ascending the specified interval from the root would result in an
invalid note, such as a triple sharp or triple flat.

	
descend_interval_from_name(qualified_interval_name)

	Descend a specified interval from the root note.

	Raises

	InvalidIntervalError: If descending the specified interval from the root would result in an
invalid note, such as a triple sharp or triple flat.

	
get_interval_name(root_note, top_note)

	
	Parameters

	
	root_note (str) – the bottom note of the interval.

	top_note (str) – the top note of the interval.

	Returns

	the name of the interval between the bottom and top notes.

	
exception musictheorpy.interval_utils.InvalidIntervalError

	Raised when an interval would result in an invalid top (ascending) or bottom (descending) note, e.g. a diminished
third ascending from Gb would technically be a Bbbb (B triple flat). While this is enharmonically equivalent to Ab,
Gb to Ab is a major second, not a diminished third. Because the technically correct note is not a valid note name,
an InvalidIntervalError should be raised.

Contributing

Musictheorpy is under active development and will grow to include new features in the future. If you are interested in
contributing to the project, all you need to do is fork the Github repository, download the source code, and begin
working. Continue to the complete guide below for more details. Even if you don’t want to contribute directly,
I am always open to hearing people’s ideas, so if you have a thought on how the project can improve, please
feel free to send me an email at jeff.moorhead1@gmail.com with your name, thoughts on improving the library, and
how I can best contact you to continue the discussion. I only ask that you be patient, as between work, graduate school,
and life, it may take me a few days to respond.

Setting Up Your Environment

The first step to contributing code to Musictheorpy is to fork the repository on Github and download a copy to your computer
so you can make your changes. See git-scm [https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project] for more information
on contributing to projects on Github.

You can run the unit tests using either Python’s built in unittest module, or by installing Nose, and running nosetests from the project root:

from the project root directory
>>> python -m unittest discover

or, using Nose...
>>> nosetests

If you do not have Nose, you can create a virtual environment and install Nose with pip install nose. See the Python docs [https://docs.python.org/3/library/venv.html] for more information about virtual environments.

All changes are required to have accompanying unit tests. Untested changes will be rejected. Further, any new classes, methods,
or functions are required to contain a docstring describing the new functionality and any parameters present in the signature.

Once you have finished your changes and have a passing test suite, please submit a pull request to have your changes merged.
More information on pull requests can be found here [https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests].

Index

 _
 | A
 | C
 | D
 | G
 | I
 | M
 | N
 | S
 | V

_

 	
 	_fetch_key_signature() (musictheorpy.scales.Scale class method)

 	_IntervalBuilder (class in musictheorpy.interval_utils)

 	
 	_NoteGroup (class in musictheorpy.notegroups)

 	_validate_root() (musictheorpy.chords.Chord method)

 	(musictheorpy.scales.Scale method)

A

 	
 	ascend_interval() (musictheorpy.notes.Note method)

 	
 	ascend_interval_from_name() (musictheorpy.interval_utils._IntervalBuilder method)

C

 	
 	Chord (built-in class)

 	(class in musictheorpy.chords)

D

 	
 	descend_interval() (musictheorpy.notes.Note method)

 	
 	descend_interval_from_name() (musictheorpy.interval_utils._IntervalBuilder method)

G

 	
 	get_interval_name() (musictheorpy.interval_utils._IntervalBuilder method)

 	(musictheorpy.notes.Note method)

 	
 	get_parallel() (musictheorpy.scales.Scale method)

 	get_relative() (musictheorpy.scales.Scale method)

 	get_triad_for_degree() (musictheorpy.scales.Scale method)

I

 	
 	InvalidBassError

 	InvalidDegreeError

 	
 	InvalidIntervalError

 	InvalidQualityError

 	InvalidTonicError

M

 	
 	musictheorpy.interval_utils.INTERVAL_NOTE_PAIRS (built-in variable)

N

 	
 	Note (built-in class)

 	(class in musictheorpy.notes)

 	
 	NoteNameError

S

 	
 	Scale (built-in class)

 	(class in musictheorpy.scales)

V

 	
 	VALID_NOTES (built-in variable)

 	
 	VALID_QUALIFIED_NAMES (built-in variable)

 	VALID_QUALIFIERS (built-in variable)

 nav.xhtml

 Table of Contents

 		
 Musictheorpy: A Music Theory Library for Python

 		
 License

 		
 Questions?

 		
 Installation

 		
 Musictheorpy API Reference

 		
 Quickstart

 		
 Notes

 		
 Scales

 		
 Chords

 		
 Reference

 		
 Notes

 		
 Scales

 		
 Chords

 		
 Note Groups

 		
 Interval Utils

 		
 Contributing

 		
 Setting Up Your Environment

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

